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Abstract—This paper documents DSCS, a privacy
preserving distributed computation protocol with na-
tive support for homomorphic encryption. The protocol
is easily extensible with advanced cryptographic con-
structions due to a program encoding with a bijective
map to arithmetic circuits. Arithmetic circuits are
a common mechanism for abstract computation, and
are widely used by advanced cryptographic construc-
tions, such as homomorphic encryption and verifiable
computation. This paper documents foundational work
exploring the validity of an arithmetic circuit based
approach to distributed computation. Ultimately, the
direct use of arithmetic circuits as a computational
substrate for distributed computation is shown to carry
an untenable bandwidth cost, even under ideal network
conditions. Importantly, this paper highlights a slew of
low hanging fruit for further research in this domain,
as well as guidance to avoid easy pitfalls.

I. Introduction
The intention of this work is to define a secure-by-

default decentralised and distributed computation proto-
col. Such a protocol would allow for mutually distrusting
distributed devices, such as distributed sensors in a re-
mote location, or Internet of Things (IoT) devices spread
throughout a home, to collaborate on the execution of
programs. Potentially, through collaboration with nearby
devices the computational latency of individual task can
be reduced, as devices leverage the spare computational
capacity of their peers.

Fully Homomorphic Encryption (FHE) is used to pro-
vide data confidentiality in this work. Much like many
other advanced cryptographic constructions, such as many
Verifiable Computation (VC) constructions [1]–[3], FHE
constructions operate over arithmetic circuits [4]–[6],
mathematical objects that are abstractions of general
computation. As such, any platform for computation that
operates natively over arithmetic circuits can easily adopt
new advanced cryptographic protocols. This work aims to
explore the performance implications of such a protocol.

Alongside a protocol definition, a protocol implementa-
tion and programming framework supporting distributed
computation paradigms has been created. This tool was
used to glean experimental results and is publicly available
on GitLab1.

1https://gitlab.com/AlexDaltonUni/PhD/discus

A. Contributions
The contributions of this paper include:
• Proposing Distributed Secure Computation System

(DSCS), an extensible decentralised distributed com-
putation protocol over arithmetic circuits with native
support for BFV, a Levelled Fully Homomorphic
Encryption (LFHE) cryptosystem.

• Providing extensions to DSCS to harden it in escalat-
ing threat models:
– A point-to-point token-based incentive scheme to

encourage lazy network participants.
– VC integration to assure program correctness.
– Discussion around Fair Exchange (FE) consid-

erations to maintain security against arbitrarily
malicious adversaries.

• DiSCuS, a DSCS implementation and decentralised
distributed computation framework.

• Quantitative performance measurements for DiSCuS.
• The identification of easy pitfalls of secure decen-

tralised distributed computation protocol design cen-
tred around arithmetic circuits, and provide recom-
mendations and guidance for further work.

To the best of our knowledge this constitutes the first
exploration into the efficacy of a distributed computation
protocol constructed from arithmetic circuits, the first
distributed computation protocol designed from the onset
with decentralisation in mind, and the first distributed
computation protocol with native FHE support.
B. Threat Model
This work is presented in the context of a semi-honest

adversarial threat model.
Definition 1 (Nosy Node Threat Model): Adversarial

nodes will adhere to the protocol, but will attempt to pas-
sively learn confidential data. Nodes will enthusiastically
engage with the tasks organised by other network nodes.
This threat model is reflective of a closed network of

homogeneous devices, possibly distributed sensors in a
remote location. Such a network consists of homogeneous
devices wishing to exercise caution when operating over
private data.
Protocol extensions are provided Appendix A and Ap-

pendix B in order to secure DSCS against progressively
more powerful adversaries.

https://gitlab.com/AlexDaltonUni/PhD/discus


II. Background
A. Distributed Computation

Distributed computation networks are a class of usually-
centralised distributed networks in which nodes collabo-
rate on the execution of computational programs. There
are a variety of protocols and frameworks built to support
the operation of distributed computation networks, includ-
ing: Charlotte [7], ParaWeb [8], ATLAS [9], and BOINC
[10]. These each provide the component building blocks
to construct a centralised distributed computational plat-
form, including: isolated execution environments, program
specification, and network primitives. These projects only
support distributed computation in centralised networks,
with vary degrees of minor protections against malicious
participants.

The existing frameworks have been used to build oper-
ational distributed computation projects [10], [11]. Unfor-
tunately, due to the constraints on the security model im-
posed by the components underpinning these distributed
computation projects they are restricted to the domain of
scientific computation, in which participants from around
the world donate spare compute resource for the public
good. One of the most well known examples of a dis-
tributed computation protocol is Folding@home [11], in
which participants perform protein folding simulations to
advance research in the field of organic chemistry. In the
wake of the COVID19 health crisis [12] Folding@home saw
an influx of volunteers and at it’s peak was able to leverage
1.01 exaFLOPS of donated computational power [13].

B. LFHE
FHE [14] provides the ability to perform arbitrary com-

putations over encrypted data. This work utilises a related
class of cryptosystem, the LFHE, which adds the addi-
tional constraint that the number of operations must be
known when the cryptosystem parameters are generated.
Any computation that exceeds these bounds runs the risk
of a decryption failure. LFHEs have the benefit of much
lower computational costs than less restrictive FHE. The
BFV LFHE cryptosystem [4] is chosen as a specific LFHE
in the DSCS implementation due to it’s popularity and
compatibility with Number Theoretic Transform (NTT)
acceleration techniques.

C. NTT FHE Acceleration
Residue Number System (RNS) acceleration techniques

are a popular mechanism used to transform a sequence
of arithmetic operations modulo a large integer, into an
independent sequence of modular arithmetic operations
over smaller fixed precision integers [15]. The NTT extends
the RNS approach from integers to large polynomials.
Many LFHE cryptosystems use large polynomials to en-
code ciphertexts [16], and therefore NTT can be used
to accelerate LFHE evaluation. Often in related work
the application of NTT encodings to polynomials are

also referred to interchangeably as the Double Chinese
Remainder Transform, and simply as RNS.
This transformation maps a single element from a ring

of polynomials with large integer coefficients taken modulo
a large composite number N =

∏
p∈PN

p, into a set of
|PN | polynomials each with coefficients taken modulo a
distinct element of PN . These polynomials can then be
operated on independently, and recombined to produce a
result equivalent to processing the original polynomials in
their original big-integer encoding. The interested reader
is directed to [16] to explore this technique further.
The LFHE used in this work, BFV, works well with

RNS-style acceleration for it’s homomorphic addition op-
erations. Unfortunately multiplication is more complex,
and does not map directly onto operations on the un-
derlying polynomial ring, as such it requires additional
machinery, as described in [17].

D. Security Properties
First, there is the problem of operating over private

data. Consider computational tasks conducted by IoT
devices, such as home security systems or smart locks,
which frequently operate over sensitive data. Any com-
petent secure computation protocol should support the
confidentiality of private data.
Definition 2 (Configurable Confidentiality): User-defined

programs support the ability to flag operands as private,
and other network participants are unable to view this
data, or any of it’s derivatives.
A common sense protocol requirement is that any

computational tasks accelerated by the network should
produce the correct result.
Definition 3 (Computation Soundness): The results of

computations must be correct.

E. Performance
In order to set a performance target we consider the

idealised behaviour of an NTT accelerated LFHE-based
computation protocol. Under ideal conditions we would
expect the latency of an accelerated program to conform
to the following equation:

tDSCS = ece + cp

n
+ ci + onn + overhead(ce + cp + ci) (1)

where e is the expected expansion in computational ef-
fort for BFV evaluation; ce, cp, and ci are the abstract
computational costs for the homomorphically encrypted,
unencrypted parallelisable, and unencrypted iterative seg-
ments of a target program respectively; on is a per-
node overhead; n is the number of participating nodes;
and overhead is a weighted linear combination of all the
instructions within a target program, where weights are
per-instruction overheads. Given overhead is sufficiently
small performance is expected to approximate Figure 1,
where tlocal is the comparison to local-only execution given
by:

tlocal = ece + cp + ci. (2)
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Figure 1. The theoretical latency of a computational task delegated
to the DSCS network.

ID LOCAL STATE

DATA: [d0, d1, . . .]

OPERATIONS: [o0, o1, . . .]

Figure 2. DSCS Work Fragment.

Note that the FHE encrypted portion, ece, is still FHE en-
crypted, as we assume that the devices still wish to utilise
the increased resistance to physical tampering provided by
FHE.

More concretely, our performance target is that for some
number of nodes the latency of a computational task
delegated to the network is less than the latency of the
same computational task executed locally.
Definition 4 (Performance Target): For some n the

latency of executing a computational task is lower when
delegated to the network than with local-only execution:

tDSCS < tlocal. (3)

III. DSCS Protocol
The DSCS protocol supports general computation be-

tween nodes in a decentralised and distributed network
with the intention of reducing the latency of individual
computations through inter-node collaboration. This fea-
ture is intended to drive the adoption of FHE in contexts
where the cost would otherwise be prohibitive.

A. Work Fragments
Programs on the DSCS network are expressed as a set of

Work Fragments, each of which describes a self-contained
portion of the program. The structure of a Work Fragment
is shown diagrammatically in Figure 2. Work Fragments
can be assembled in advance of execution or assembled
dynamically to better suit a variety of network conditions.

Within a Work Fragments the ID provides an identifier
generated by the originating node, this is used to correlate
incoming results with the original program. A flag LOCAL
identifies this Work Fragment as containing unencrypted

private information if true. The STATE can be one of four
values: WAITING when there are unresolved dependencies,
READY when all external dependencies have been resolved,
IN PROGRESS when the Work Fragment is currently being
evaluated, and DONE when evaluation terminates. DATA is
an ordered set of write-once data which can be one of four
types: an unsigned integer, BFV ciphertext, a fragment
of an NTT-encoded BFV ciphertext, or a special Wait
type. Wait indicates the operand is the output of a yet-
to-be-executed operation. OPERATIONS is an ordered set of
arithmetic instructions to be executed in-turn. Arithmetic
operations supported include: ADD, SUB, MUL, and DIV.
By design Work Fragments have a fixed and easily pre-
calculable execution cost. Some of the elements of DATA
are designated as the output of the Work Fragment, upon
completing Work Fragment evaluation data in these loca-
tions is returned to the originating node.

The operations can accept operands of mixed-types,
this functionality is achieved by embedding public keys
in the BFV ciphertexts, allowing plaintext values to be
encrypted ad-hoc. For a given instruction, if at least one
operand is an RNS-encoded BFV ciphertext fragment the
output of an operation will be an RNS-encoded BFV
ciphertext fragment, if not and at least one operand is
a BFV ciphertext the output of an operation will be a
BFV ciphertext, otherwise the output of the operation is
an unsigned integer.
Work Fragments are evaluated by executing each oper-

ation listed in OPERATIONS in turn, iteratively mutating
DATA until each instruction has been executed. The vector
of all data marked as a result is collated and returned to
the originating node.

B. Protocol Description

Each node has a public identity which corresponds to
their public key for a pre-agreed signature scheme. All
messages are cryptographically signed via this signature
scheme, allowing the originator of all messages to be
verified. Nodes are organised in an ad-hoc topology with
translation between public identifiers and IP addresses
provided by an Multicast DNS (mDNS) protocol which
runs in parallel with the DSCS protocol.

Nodes construct short lived centralised subnetworks
to collaborate on a single task. Each node organises a
subnetwork of collaborators for, at most, one in-progress
task under their ownership. The set of nodes collaborating
on a given task are referred to as aWork Group. Regardless
of the existence of any in-progress tasks, DSCS requires
each node to provide four public functions:
• Advertise: > or ⊥ ← Adv(); returns > if this node

is organising an in-progress task, and ⊥ otherwise.
• Registration: > or ⊥ ← Reg(i); registering node

with identity i to the current Work Group. Returns
> if successful, and ⊥ if unsuccessful. i must be the
identity of the node making the request.
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Figure 3. Node A inquires after any work Node B is advertising,
Node A then registers for Node B’s Work Group. Node B then sends
Node A Work Fragment w for evaluation, who returns result r.

• Deregistration: > ← Dereg(i); unregister a node
with identity i from the current Work Group. i must
be the identity of the node making the request.

• Evaluate: r or ⊥ ← Eval(w); if Work Fragment w
originates from the organiser of a registered Work
Group, evaluate w and return result r, otherwise
return ⊥.

Independent nodes are free to interact with these public-
facing functions however they wish. The threat model
assumes that nodes will enthusiastically engage with the
tasks proposed by their peers, actively seeking out Work
Groups and driving network computation throughput. An
end-to-end example including joining a Work Group and
evaluating Work Fragments is provided in Figure 3.

C. Protocol Evaluation
Clearly this protocol is both distributed and decen-

tralised, but the required security properties warrant some
further discussion.
Configurable Confidentiality is achieved via two mea-

sures. First, confidential data is suitably flagged, and as
such any Work Fragments containing confidential data in
plaintext have the LOCAL flag set to true. Work Fragments
with the LOCAL flag set to true should only ever be
evaluated locally, and as such never leave the originat-
ing node. The results of computations over confidential
data are themselves confidential, and the persistence of
confidentiality is achieved through poisoning the data
with the confidentiality flag. The second measure deployed
to ensure data confidentiality is the BFV LFHE. The
originating node is able to set the LOCAL flag to false by
encrypting any confidential data via BFV, parallelising the
homomorphic operations via the NTT to produce many
independent Work Fragments that are able to drive the
processing of confidential data on remote nodes.
Violating the Computation Soundness property is not

possible in this threat model. The protocol extensions
provided in Appendix B ensure this property is supported
by cryptographic machinery, rather than adversarial as-
sumptions.

IV. DiSCuS
DiSCuS is an implementation of the DSCS protocol and

distributed computation framework, intended to demon-
strate the efficacy of a secure decentralised distributed
computation platform. It is written in Rust and imple-
ments DSCS as it is defined the previous section. The
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Figure 4. Latency of 1600 equivalent-plaintext-addition-operations
via independent homomorphic additions on the DiSCuS network.
The line tDSCS is fit against the data via polynomial regression with
R2 = 0.92.

insights gleaned from this work are detailed towards the
end of this paper and should act as useful guidance for
subsequent research.

A. Performance Evaluation
In order to provide a sanity check of the optimistic

best-case performance for the system a simple benchmark
was constructed featuring 1,600 independent homomor-
phic ciphertext additions. Due to SIMD properties of
BFV, with a ciphertext ring size set arbitrarily at 16,
1,600 independent addition operations translates into 100
ciphertext operations. The benchmark was run on a single
desktop computer with a multicore CPU, with DSCS
networks consisting of between 1 and 16 nodes, where
results were averaged over 30 independent runs. A single
desktop computer was used to provide best-case network
latency. These results were compared with an equivalent
program executed locally with the same DSCS instruction
interpreter, bypassing the DSCS network entirely. In both
cases the benchmark measures the time between the first
instruction beginning evaluation (i.e. leaving the host
node) and receiving the ultimate result. This benchmark
should highlight the best-case performance of the system
under ideal network conditions.
The experimental results in Figure 4 paint disappointing

picture as compared with the target performance stated in
Figure 1. Using polynomial regression to extract constants
for Equation 2 we get c = 0.697, on = 0.004, and
overhead(c) = 0.00074c. The results of this best-case
benchmark highlight some fundamental flaws with the
design of DSCS.
There are three primary factors contributing to poor

performance:
1) The time required to transmit a Work Fragment

is a significant factor in the execution latency. As
they exist Work Fragment do not offer a compressed
enough program encoding.

2) The current Work Fragment format requires that
during runtime the node continuously checks for
unblocked dependencies.



3) The data stored in the runtime Work Fragment data
pool is write-once, requiring that a large volume of
Wait operands are transmitted to satisfy all inter-
mediate results.

V. Future Work
This body of work provides us with clear guidance for

any future work attempting to design a tenable decen-
tralised distributed secure computation protocol.
• A more compressed program representation must

be designed, transmission time can not be an over-
whelming element of execution latency. This could be
achieved via:
– The introduction of a LOOP instruction to repeat

identical subtrees within the arithmetic circuit.
– Replacing Work Fragments with a new more

compressed arithmetic circuit encoding.
– Replacing arithmetic circuits entirely for a more

expressive program encoding. Control flow and
boolean operations will allow for a much more
expressive program encoding, although diverging
from arithmetic circuits will cause difficulties for
the incorporation of any advanced cryptographic
constructions.

• In order to relieve constraints on runtime depen-
dency management, instructions in program encod-
ings should include information about any instruc-
tions they are blocking. Alternatively a more robust
execution runtime with operand caching and intelli-
gent dependency management could alleviate some of
these concerns.

• Data pools accompanying program encodings should
no longer be write-once to allow reusing data loca-
tions and therefore enabling more compact program
encodings. The bijective mapping between arithmetic
circuits and Work Fragments will be enforced by a
compiler capable of generating Work Fragments.

The primary concern of future implementation work must
be program compactness. The time taken to disseminate
atomic program units to collaborating nodes should be a
negligible part of the execution latency.

VI. Conclusion
There is a fair amount of work to be done in improving

DSCS, or creating a DSCS-like protocol, to produce a com-
pelling computational substrate for mutually distrusting
devices to securely collaborate on tasks. In this current
incarnation there is no reason for a device to invest the
effort into organising a group of peers over performing a
computation locally, in isolation.

There are a slew of low-hanging-fruit architectural and
implementation improvements that can be made to DSCS,
which in conjunction could conceivably result in massively
reduced operational overheads. The primary objective of
further research must be to producing much more compact
program encodings. If this can be achieved it is certainly

within the realm of possibility that a system like DSCS
could have performance such that it is able to provide
utility over local-only execution.
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Appendix
A. Protocol Extension for Lazy Nodes

Conceivably, adversaries may try to exploit the protocol
in order to leverage more computation from the network
than they are willing to return in kind. This would be
achieved by engaging lazily in the work of their peers.
Adversarial nodes such as these are self-motivated and
would act to maximise their utility.

To defend against lazy adversarial behaviours a node-
to-node credit system is introduced. Each node maintains
a signed integer, reflecting a credit total, for each node
they interact with. A positive value representing being in
credit, and therefore can easily leverage the other node for
compute, a negative value representing debt which could
be redeemed at any time. Completed work is rewarded
with credit, which is non-transferable and can only be
redeemed at the originating node for the evaluation of
Work Fragments for an equitable amount of work. The
credit awarded for evaluating a Work Fragment is given
by the weighted total of all OPERATIONS contained within,
with weights predefined network-wide. A node’s credit can
be redeemed for work at the credit-issuing node.

B. Protocol Extension for Dishonest Nodes
Arbitrarily malicious nodes suggest four primary cate-

gories of adversarial activity:
1) Falsification of results, where a remote node re-

turns incorrect results for the evaluation of a Work
Fragment.

2) Falsification of credit, where a node attempts to
redeem unearned credit, or a remote node denies an
attempt to redeem honestly earned credit.

3) Unfair exchange of credit, where a node will try
to gain credit without releasing the results of a Work
Fragment, or a node attempts to gain the results of
a Work Fragment without releasing credit.

4) Clean identity generation, where nodes attempt
replace identities associated with malicious activity
with a new identity.

Falsification of results is easily combated with the
addition of a VC scheme to the system [18]. Before being
sent to a remote node for evaluation, Work Fragments are

preprocessed via VC.ProbGen, and then upon receiving the
results of the evaluated Work Fragment the results are
extracted via VC.Vf.
Combating falsification of credit requires extending

the credit system such that any third party can ascertain
the truthfulness of any allegations of dishonesty. To this
end whenever the credit value changes, the node which is
losing credit (either because they are awarding credit, or
because they are spending it on an outsourced evaluation)
cryptographically signs a concatenation of the new credit
total with a strictly increasing integer ID. This is then sent
to the other node. If a dispute occurs at a later date, an
honest node will be able to present a signed credit total
with the largest ID to corroborate their claims.
In order to remove the possibility of the unfair ex-

change of credit an FE scheme must be used whenever
credit is exchanged for the results of an outsourced compu-
tation [19]. Unfortunately, most FE constructions require
a trusted third party, and so resist decentralisation [20].
There exists some notion of two party FE, but it remains
well beyond the realm of practicality [21]. Regardless, even
if two party FE was readily available, there is no way to
naively compose FE and VC, as using FE is equivalent
to ensuring each transaction is atomic, and as such the
credit-issuing node is unable to run VC.Vf before issuing
the credit.
Clean identity generation occurs when a node wishes

to discard an identity associated with malicious behaviour
and adopt a new identity. There is a subtle pressure in
DSCS that decentivises frivolously discarding identities
provided by the credit system. Nodes will be more likely
to trust long lived identities to persist long enough for
any issued credit to be redeemed. As such new nodes
on the network will find themselves having to commit
computational effort to unchoking themselves by earning
credit from their peers. Unfortunately, this is a heuristic
defence at best.
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